Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Hortic ; 4(1): 15, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649966

RESUMO

The molecular basis of orchid flower development involves a specific regulatory program in which MADS-box transcription factors play a central role. The recent 'perianth code' model hypothesizes that two types of higher-order heterotetrameric complexes, namely SP complex and L complex, play pivotal roles in the orchid perianth organ formation. Therefore, we explored their roles and searched for other components of the regulatory network.Through the combined analysis for transposase-accessible chromatin with high-throughput sequencing and RNA sequencing of the lip-like petal and lip from Phalaenopsis equestris var.trilip, transcription factor-(TF) genes involved in lip development were revealed. PeNAC67 encoding a NAC-type TF and PeSCL23 encoding a GRAS-type TF were differentially expressed between the lip-like petal and the lip. PeNAC67 interacted with and stabilized PeMADS3, which positively regulated the development of lip-like petal to lip. PeSCL23 and PeNAC67 competitively bound with PeKAN2 and positively regulated the development of lip-like petal to petal by affecting the level of PeMADS3. PeKAN2 as an important TF that interacts with PeMADS3 and PeMADS9 can promote lip development. These results extend the 'perianth code' model and shed light on the complex regulation of orchid flower development.

2.
Plant Physiol ; 195(1): 785-798, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38159040

RESUMO

Rice (Oryza sativa) bacterial blight, caused by Xanthomonas oryzae pv. Oryzae (Xoo), threatens plant growth and yield. However, the molecular mechanisms underlying rice immunity against Xoo remain elusive. Here, we identified a NAC (NAM-ATAF-CUC) transcription factor OsNAC2 as a negative regulator in the resistance to bacterial blight disease in rice. Constitutive overexpression of OsNAC2 inhibited the expression of salicylic acid (SA) biosynthesis-related genes (i.e. isochorismate synthase 1 (OsICS1), phenylalanine ammonia lyase 3 (OsPAL3), etc.) with adverse impacts on the pathogenesis-related proteins (PRs) responses and compromised blight resistance. Moreover, OsNAC2 interacted with APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factor OsEREBP1 and possibly threatened its protein stability, destroying the favorable interaction of OsEREBP1-Xa21-binding protein OsXb22a in the cytoplasm during Xoo-induced infection. On the contrary, downregulation of OsNAC2 resulted in enhanced resistance to bacterial blight in rice without any growth or yield penalties. Our results demonstrated that OsNAC2 inhibits SA signaling and stably interacted with OsEREBP1 to impair disease resistance. This OsNAC2-OsEREBP1-based homeostatic mechanism provided insights into the competition between rice and bacterial pathogens, and it will be useful to improve the disease resistance of important crops through breeding.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Homeostase , Oryza , Doenças das Plantas , Proteínas de Plantas , Fatores de Transcrição , Xanthomonas , Oryza/genética , Oryza/microbiologia , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/fisiologia , Xanthomonas/patogenicidade , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resistência à Doença/genética , Imunidade Vegetal/genética , Ácido Salicílico/metabolismo
3.
J Plant Physiol ; 292: 154159, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141482

RESUMO

Mitochondrial homeostasis plays a crucial role in determining cell fate by direct influence on cell apoptosis and autophagy. The ATP and Zn2+-dependent protease FtsH are of paramount importance in maintaining mitochondrial homeostasis. In Phalaenopsis equestris, three mitochondrial FtsH proteases were identified, one of which was encoded by the PeFtsH5 gene. This gene encoded a distinctive mitochondrial protein featuring a unique domain within the FtsH family. Down-regulating the expression of the PeFtsH5 homolog in Nicotiana benthamiana resulted in elevated expression levels of SA synthesis-related genes, leading to enhanced disease resistance. However, this down-regulation also caused cellular damage. Similarly, in P. equestris, the down-regulation of PeFtsH5 expression promoted the expression of defense response genes, leading to accelerated apoptosis and increased ROS levels. Nonetheless, this down-regulation also positively influenced plant resistance to biotic stress. Notably, the PeFtsH5 (i-AAA) protein, as revealed by dual membrane experiments, could form homopolymers exclusively, as it did not interact with the other two mitochondrial FtsH proteases. Consequently, this mitochondrial FtsH protease functioned as a homopolymer within P. equestris cells. The findings of this study elucidated the role of PeFtsH5 in responding to biological stress and provided new insights into its potential molecular mechanism. The result presented in this study hold promise for future research endeavors examining the regulatory effects of mitochondrial proteases on mitochondrial homeostasis and the development of stress-resistant P. equestris varieties through breeding programs.


Assuntos
Mitocôndrias , Orchidaceae , Mitocôndrias/metabolismo , Plantas , Estresse Fisiológico , Peptídeo Hidrolases/metabolismo , Orchidaceae/metabolismo
4.
Mil Med Res ; 10(1): 66, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111039

RESUMO

BACKGROUND: The essential roles of platelets in thrombosis have been well recognized. Unexpectedly, thrombosis is prevalent during thrombocytopenia induced by cytotoxicity of biological, physical and chemical origins, which could be suffered by military personnel and civilians during chemical, biological, radioactive, and nuclear events. Especially, thrombosis is considered a major cause of mortality from radiation injury-induced thrombocytopenia, while the underlying pathogenic mechanism remains elusive. METHODS: A mouse model of radiation injury-induced thrombocytopenia was built by exposing mice to a sublethal dose of ionizing radiation (IR). The phenotypic and functional changes of platelets and megakaryocytes (MKs) were determined by a comprehensive set of in vitro and in vivo assays, including flow cytometry, flow chamber, histopathology, Western blotting, and chromatin immunoprecipitation, in combination with transcriptomic analysis. The molecular mechanism was investigated both in vitro and in vivo, and was consolidated using MK-specific knockout mice. The translational potential was evaluated using a human MK cell line and several pharmacological inhibitors. RESULTS: In contrast to primitive MKs, mature MKs (mMKs) are intrinsically programmed to be apoptosis-resistant through reprogramming the Bcl-xL-BAX/BAK axis. Interestingly, mMKs undergo minority mitochondrial outer membrane permeabilization (MOMP) post IR, resulting in the activation of the cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) pathway via the release of mitochondrial DNA. The subsequent interferon-ß (IFN-ß) response in mMKs upregulates a GTPase guanylate-binding protein 2 (GBP2) to produce large and hyperreactive platelets that favor thrombosis. Further, we unmask that autophagy restrains minority MOMP in mMKs post IR. CONCLUSIONS: Our study identifies that megakaryocytic mitochondria-cGAS/STING-IFN-ß-GBP2 axis serves as a fundamental checkpoint that instructs the size and function of platelets upon radiation injury and can be harnessed to treat platelet pathologies.


Assuntos
Lesões por Radiação , Trombocitopenia , Trombose , Humanos , Animais , Camundongos , Megacariócitos/metabolismo , Megacariócitos/patologia , Trombocitopenia/etiologia , Apoptose , Nucleotidiltransferases/metabolismo , Trombose/metabolismo
6.
Cell Mol Immunol ; 20(10): 1216-1231, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37644165

RESUMO

Although DNA mutation drives stem cell aging, how mutation-accumulated stem cells obtain clonal advantage during aging remains poorly understood. Here, using a mouse model of irradiation-induced premature aging and middle-aged mice, we show that DNA mutation accumulation in hematopoietic stem cells (HSCs) during aging upregulates their surface expression of major histocompatibility complex class II (MHCII). MHCII upregulation increases the chance for recognition by bone marrow (BM)-resident regulatory T cells (Tregs), resulting in their clonal expansion and accumulation in the HSC niche. On the basis of the establishment of connexin 43 (Cx43)-mediated gap junctions, BM Tregs transfer cyclic adenosine monophosphate (cAMP) to aged HSCs to diminish apoptotic priming and promote their survival via activation of protein kinase A (PKA) signaling. Importantly, targeting the HSC-Treg interaction or depleting Tregs effectively prevents the premature/physiological aging of HSCs. These findings show that aged HSCs use an active self-protective mechanism by entrapping local Tregs to construct a prosurvival niche and obtain a clonal advantage.


Assuntos
Células-Tronco Hematopoéticas , Linfócitos T Reguladores , Medula Óssea , Senescência Celular , DNA/metabolismo
7.
Redox Biol ; 62: 102661, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906952

RESUMO

There is growing appreciation that hematopoietic alterations underpin the ubiquitous detrimental effects of metabolic disorders. The susceptibility of bone marrow (BM) hematopoiesis to perturbations of cholesterol metabolism is well documented, while the underlying cellular and molecular mechanisms remain poorly understood. Here we reveal a distinct and heterogeneous cholesterol metabolic signature within BM hematopoietic stem cells (HSCs). We further show that cholesterol directly regulates maintenance and lineage differentiation of long-term HSCs (LT-HSCs), with high levels of intracellular cholesterol favoring maintenance and myeloid bias of LT-HSCs. During irradiation-induced myelosuppression, cholesterol also safeguards LT-HSC maintenance and myeloid regeneration. Mechanistically, we unravel that cholesterol directly and distinctively enhances ferroptosis resistance and boosts myeloid but dampens lymphoid lineage differentiation of LT-HSCs. Molecularly, we identify that SLC38A9-mTOR axis mediates cholesterol sensing and signal transduction to instruct lineage differentiation of LT-HSCs as well as to dictate ferroptosis sensitivity of LT-HSCs through orchestrating SLC7A11/GPX4 expression and ferritinophagy. Consequently, myeloid-biased HSCs are endowed with a survival advantage under both hypercholesterolemia and irradiation conditions. Importantly, a mTOR inhibitor rapamycin and a ferroptosis inducer imidazole ketone erastin prevent excess cholesterol-induced HSC expansion and myeloid bias. These findings unveil an unrecognized fundamental role of cholesterol metabolism in HSC survival and fate decisions with valuable clinical implications.


Assuntos
Ferroptose , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea , Diferenciação Celular/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Colesterol/metabolismo
8.
Water Res ; 233: 119774, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848852

RESUMO

Organophosphate esters (OPEs) are emerging contaminants of growing concern, and there is limited information about the bacterial transformation of OPEs. In this study, we investigated the biotransformation of tris(2-butoxyethyl) phosphate (TBOEP), a frequently detected alkyl-OPE by a bacterial enrichment culture under aerobic conditions. The enrichment culture degraded 5 mg/L TBOEP following the first-order kinetics with a reaction rate constant of 0.314 h-1. TBOEP was mainly degraded via ether bond cleavage, evidenced by the production of bis(2-butoxyethyl) hydroxyethyl phosphate, 2-butoxyethyl bis(2-hydroxyethyl) phosphate, and 2-butoxyethyl (2-hydroxyethyl) hydrogen phosphate. Other transformation pathways include terminal oxidation of the butoxyethyl group and phosphoester bond hydrolysis. Metagenomic sequencing generated 14 metagenome-assembled genomes (MAGs), showing that the enrichment culture primarily consisted of Gammaproteobacteria, Bacteroidota, Myxococcota, and Actinobacteriota. One MAG assigned to Rhodocuccus ruber strain C1 was the most active in the community, showing upregulation of various monooxygenase, dehydrogenase, and phosphoesterase genes throughout the degradation process, and thus was identified as the key degrader of TBOEP and the metabolites. Another MAG affiliated with Ottowia mainly contributed to TBOEP hydroxylation. Our results provided a comprehensive understanding of the bacterial TBOEP degradation at community level.


Assuntos
Retardadores de Chama , Fosfatos , Ésteres/química , Ésteres/metabolismo , Compostos Organofosforados , Organofosfatos/metabolismo , Retardadores de Chama/metabolismo
9.
Plant Physiol Biochem ; 196: 683-694, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36801773

RESUMO

Phalaenopsis equestris is an ornamental plant with very large leaves. In this study, we identified genes related to the regulation of leaf development in Phalaenopsis and explored their mechanism of action. Sequence alignment and phylogenetic analyses revealed that PeGRF6 in the PeGRF family of P. equestris has similarities with the Arabidopsis genes AtGRF1 and AtGRF2, which are known to be involved in the regulation of leaf development. Among the PeGRFs, PeGRF6 was continuously and stably expressed at various stages of leaf development. The functions of PeGRF6 and of its complex formed with PeGIF1 in leaf development were verified by virus-induced gene silencing (VIGS) technology. The results show that the PeGRF6-PeGIF1 complex forms in the nucleus and positively regulates leaf cell proliferation via influencing cell size. Interestingly, VIGS suppression of PeGRF6 resulted in anthocyanin accumulation in Phalaenopsis leaves. Analyses of the regulatory mechanism of the miR396-PeGRF6 model based on the P. equestris small RNA library constructed here suggested that PeGRF6 transcripts are cleaved by Peq-miR396. These results show that, compared with PeGRF6 or PeGIF1 alone, the PeGRF6-PeGIF1 complex plays a more important role in the leaf development of Phalaenopsis, possibly by regulating the expression of cell cycle-related genes.


Assuntos
Arabidopsis , MicroRNAs , Orchidaceae , Regulação da Expressão Gênica de Plantas , Filogenia , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas Geneticamente Modificadas/genética , Folhas de Planta/metabolismo , Arabidopsis/metabolismo , Proliferação de Células/genética , Orchidaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
JACC Basic Transl Sci ; 7(8): 820-840, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36061341

RESUMO

Chronic kidney disease (CKD) is well recognized as a distinct contributor to cardiac hypertrophy, while the underlying mechanism remains incompletely understood. Here, the authors show that myocardial mitochondrial oxidative damage is early and prominent in CKD and distinctively stimulates the STING-NFκB pathway by releasing mitochondrial DNA to drive cardiac hypertrophy. Furthermore, the authors reveal that ornithine decarboxylase (ODC1)-putrescine metabolic flux is transactivated by NFκB and is required for the STING-NFκB pathway to drive cardiac hypertrophy. Finally, genetic or pharmacologic inhibition of the myocardial mitochondria-STING-NFκB-ODC1 axis significantly prevents CKD-associated cardiac hypertrophy. Therefore, targeting the myocardial mitochoandria-STING-NFκB-ODC1 axis is a promising therapeutic strategy for cardiac hypertrophy in patients with CKD.

11.
J Thromb Haemost ; 20(12): 2972-2987, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087344

RESUMO

BACKGROUND: Thrombosis and hemorrhage as two opposite pathologies are prevalent within the chronic kidney disease (CKD) population. Platelet homeostasis, which positions centrally in their pathogenesis, varies among the CKD population, while the underlying mechanism is poorly understood. OBJECTIVE: To investigate the change character and mechanism of platelet homeostasis in CKD and its association with renal Klotho deficiency. METHODS: The change character of platelet homeostasis and its association with renal Klotho deficiency were determined based on a cohort study as well as CKD mice and Klotho-deficient mice with CKD. The effects on thrombopoiesis and platelet lifespan were examined by flow cytometry and platelet transfer. The underlying mechanism was explored by proteomics, flow cytometry, western blot, and immunoprecipitation. RESULTS: We show that platelet count declines both in patient and mouse models with advanced CKD (Adv-CKD) and is positively associated with circulating Klotho levels. Mechanistically, we identify that ubiquitin ligase UBE2O governs Bcl-xL ubiquitination and degradation in platelets, whereas Adv-CKD-induced oxidative stress in platelets stimulates p38MAPK to promote Bcl-xL phosphorylation, which facilitates UBE2O binding to Bcl-xL and subsequent Bcl-xL degradation. Consequently, platelet lifespan is shortened in Adv-CKD, culminating in platelet count decline. However, kidney-secreted soluble Klotho protein restricts oxidative stress in platelets, thereby preserving Bcl-xL expression and platelet lifespan. CONCLUSIONS: Our findings uncover the mechanism of platelet count decline in Adv-CKD and identify renal Klotho as a long-range regulator of platelet lifespan, which not only provide a molecular mechanism underlying CKD-associated thrombocytopenia and hemorrhage but also offer a promising therapy choice.


Assuntos
Longevidade , Insuficiência Renal Crônica , Camundongos , Animais , Estudos de Coortes , Rim , Ubiquitinação
12.
Nutrients ; 14(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014901

RESUMO

Myelosuppression is a common and intractable side effect of cancer therapies including radiotherapy and chemotherapy, while the underlying mechanism remains incompletely understood. Here, using a mouse model of radiotherapy-induced myelosuppression, we show that inorganic phosphate (Pi) metabolism is acutely inhibited in hematopoietic stem cells (HSCs) during irradiation-induced myelosuppression, and closely correlated with the severity and prognosis of myelosuppression. Mechanistically, the acute Pi metabolic inhibition in HSCs results from extrinsic Pi loss in the bone marrow niche and the intrinsic transcriptional suppression of soluble carrier family 20 member 1 (SLC20A1)-mediated Pi uptake by p53. Meanwhile, Pi metabolic inhibition blunts irradiation-induced Akt hyperactivation in HSCs, thereby weakening its ability to counteract p53-mediated Pi metabolic inhibition and the apoptosis of HSCs and consequently contributing to myelosuppression progression. Conversely, the modulation of the Pi metabolism in HSCs via a high Pi diet or renal Klotho deficiency protects against irradiation-induced myelosuppression. These findings reveal that Pi metabolism and HSC survival are causally linked by the Akt/p53-SLC20A1 axis during myelosuppression and provide valuable insights into the pathogenesis and management of myelosuppression.


Assuntos
Fosfatos , Proteína Supressora de Tumor p53 , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fosfatos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo
13.
Water Res ; 218: 118464, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35461102

RESUMO

Tris(2-chloroethyl) phosphate (TCEP) is of growing concern because of its ubiquitous occurrence, potential toxicity, and persistence in the environment. In this study, two efficient TCEP degradation consortia (AT1 and AT3) were developed and were able to completely hydrolyze TCEP within 20-25 h. Rhizobiales was identified as the key degrader in both consortia, because Rhizobiales-related phosphoesterase genes were enriched by one to two orders of magnitude when the carbon source was changed from acetate to TCEP. In addition, the increase in Rhizobiales abundance was related to the development of TCEP degradation. The isolation of Xanthobacter strains confirmed the efficient TCEP and bis(2-chloroethyl) phosphate (BCEP) degradation of Rhizobiales. The higher abundances of phosphoesterase genes affiliated with Rhizobiales genera (Bradyrhizobium and Ancylobacter), Cytophagales genus (Spirosoma), Sphingobacteriales genus (Pedobacter), and Burkholderia genus (Methylibium), may be related to the faster TCEP degradation in AT3, while the higher abundance of Rhizobiales genus (Hyphomicrobium)-related phosphodiesterase (PDE) genes may contribute to the faster BCEP degradation in AT1. The stepwise hydrolysis of TCEP was likely catalyzed by different bacterial guilds, which was confirmed by the coculture of TCEP- and BCEP-degrading isolates and highlighted the importance of synergistic interactions during TCEP degradation.


Assuntos
Retardadores de Chama , Fosfinas , Retardadores de Chama/metabolismo , Organofosfatos , Fosfatos
14.
Cell Rep ; 38(7): 110392, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172146

RESUMO

The composition and origin of extrinsic cues required for hematopoietic stem cell (HSC) maintenance are incompletely understood. Here we identify renal Klotho and inorganic phosphate (Pi) as extrinsic factors that antagonistically regulate HSC maintenance in the bone marrow (BM). Disruption of the Klotho-Pi axis by renal Klotho deficiency or Pi excess causes Pi overload in the BM niche and Pi retention in HSCs, leading to alteration of HSC maintenance. Mechanistically, Pi retention is mediated by soluble carrier family 20 member 1 (SLC20A1) and sensed by diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) to enhance Akt activation, which then upregulates SLC20A1 to aggravate Pi retention and augments GATA2 activity to drive the expansion and megakaryocyte/myeloid-biased differentiation of HSCs. However, kidney-secreted soluble Klotho directly maintains HSC pool size and differentiation by restraining SLC20A1-mediated Pi absorption of HSCs. These findings uncover a regulatory role of the Klotho-Pi axis orchestrated by the kidneys in BM HSC maintenance.


Assuntos
Células-Tronco Hematopoéticas/citologia , Rim/metabolismo , Proteínas Klotho/metabolismo , Fosfatos/metabolismo , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Fator de Transcrição GATA2/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Proteínas Klotho/deficiência , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Solubilidade
15.
Exp Cell Res ; 409(2): 112934, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801561

RESUMO

Hematopoietic stem cells (HSCs) are sensitive to ionizing radiation (IR) damage, and its injury is the primary cause of bone marrow (BM) hematopoietic failure and even death after exposure to a certain dose of IR. However, the underlying mechanisms remain incompletely understood. Here we show that mitochondrial oxidative damage, which is characterized by mitochondrial reactive oxygen species overproduction, mitochondrial membrane potential reduction and mitochondrial permeability transition pore opening, is rapidly induced in both human and mouse HSCs and directly accelerates HSC apoptosis after IR exposure. Mechanistically, 5-lipoxygenase (5-LOX) is induced by IR exposure and contributes to IR-induced mitochondrial oxidative damage through inducing lipid peroxidation. Intriguingly, a natural antioxidant, caffeic acid (CA), can attenuate IR-induced HSC apoptosis through suppressing 5-LOX-mediated mitochondrial oxidative damage, thus protecting against BM hematopoietic failure after IR exposure. These findings uncover a critical role for mitochondria in IR-induced HSC injury and highlight the therapeutic potential of CA in BM hematopoietic failure induced by IR.


Assuntos
Antioxidantes/farmacologia , Araquidonato 5-Lipoxigenase/química , Ácidos Cafeicos/farmacologia , Radioisótopos de Cobalto/toxicidade , Células-Tronco Hematopoéticas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Dano ao DNA , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/efeitos da radiação
16.
Cell Commun Adhes ; 14(1): 21-31, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17453828

RESUMO

Melanoma-associated antigen family protein-D1 (MAGE-D1) is a recently identified p75 neurotrophin receptor intracellular binding protein and functions as an adaptor that mediates multiple signaling pathways, including Dlx/Msx-mediated transcription. Here, a new regulatory function for MAGE-D1 in tumor cell motility and adhesion to endothelium is described. MAGE-D1 over-expression suppressed HeLa cell and BEL7402 cell migration, invasion, and adhesion to the monolayer of ECV304 cells. We also report that MAGE-D1 over-expression disrupted actin cytoskeleton rearrangement induced by hypoxia and down-regulated hypoxia inducible factor 1-dependent luciferase gene expression. These findings provide new insight into the ability of MAGE-D1 to suppress the motility and adhesion response of tumor cells by interfering with actin cytoskeleton reorganization and hypoxia inducible factor 1-dependent gene expression.


Assuntos
Actinas/metabolismo , Antígenos de Neoplasias/metabolismo , Movimento Celular , Endotélio/patologia , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Actinas/química , Adenoviridae/genética , Western Blotting , Adesão Celular , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Células HeLa , Humanos , Fator 1 Induzível por Hipóxia/genética , Invasividade Neoplásica , Pseudópodes/metabolismo , Cicatrização
17.
Mol Cell Biochem ; 300(1-2): 89-99, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17149546

RESUMO

MAGE-D1 is a member of the MAGE family of proteins, and functions as an adaptor that mediates multiple signaling pathways. The current study for the first time provides evidence for a role of MAGE-D1 in the negative regulation of angiogenic activity in vitro and in vivo models. Our findings showed that MAGE-D1 over-expression significantly suppressed the angiogenic key events such as endothelial cell migration and invasion, adhesion on collagen I substrate, and in vitro differentiation into tube-like structures under both normoxic and hypoxic conditions. MAGE-D1 over-expression also inhibited in vivo angiogenesis in Matrigel plugs that were implanted subcutaneously in mice. With further experiments, we revealed that MAGE-D1 over-expression disrupted actin cytoskeleton organization and lamellipodia formation, and down-regulated HIF-1-dependent gene expression in endothelial cells under hypoxic conditions. These findings demonstrate a new function of MAGE-D1 in the regulation of angiogenesis and provide new insight into the ability of MAGE-D1 to suppress the growth and angiogenic response of endothelial cells by interfering with HIF-1-dependent gene expression, and actin cytoskeleton reorganization, suggesting that MAGE-D1 might be a novel inhibitor of angiogenesis in vitro and in vivo.


Assuntos
Adenoviridae/fisiologia , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Fisiológica , Actinas/metabolismo , Adesão Celular , Movimento Celular , Células Cultivadas , Colágeno/metabolismo , Citoesqueleto/metabolismo , Combinação de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/virologia , Regulação da Expressão Gênica , Genes Reporter , Humanos , Fator 1 Induzível por Hipóxia/genética , Laminina/metabolismo , Proteoglicanas/metabolismo , Pseudópodes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA